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Abstract. The superoperator theory of nonequilibrium statistical mechanics is applied to 
the Dirac and Klein-Gordon equations. The transformation operators of this theory are 
found to be closely related to the Foldy-Wouthuysen transformation while the associated 
subdynamics corresponds to the separation into smooth motion and zitterbewegung. 

1. Introduction 

In recent years Prigogine and co-workers have developed a theory of nonequilibrium 
statistical mechanics, referred to below as the superoperator theory, which has as its 
object the derivation and transformation of kinetic equations (Prigogine et a1 1970a, b. 
George 1967). The two main aspects of this work are a separation of the original time 
evolution into independent subdynamics and a transformation of the resulting equations 
into what is often called the physical particle representation. More recently these ideas 
have found applications outside their original domain and the present article is concerned 
with one such case, an application to the Foldy-Wouthuysen (FW) transformation. It is 
found that the latter is an example of the transformations referred to above and, further- 
more, that there is a close connection between the subdynamics and the zitterbewegung 
phenomenon of the Dirac and Klein-Gordon equations. 

In the sections which follow we introduce first some notions and notation from the 
free-particle Dirac equation and the superoperator theory. Sections 4 and 5 calculate 
the superoperators associated with the FW transformation and apply them to produce 
the transformed Hamiltonian and the subdynamics. The projector l7 which gives the 
subdynamics turns out to be exactly the ‘observable projection’ of Pryce (1948). Section 6 
sketches the equivalent results for the Klein-Gordon equation and the situation when an 
electromagnetic field is present. For the discussion of free particles we use a recent form 
of the superoperator theory (Rae 1972a, b) which allows exploitation of the known 
explicit form of the FW transformation in that case. 

An outline of the direct approach is given in an Appendix for those readers familiar 
with the more standard form of the theory. In the case where a field is present one 
generally has to employ perturbation methods and there is then little to choose between 
the two forms of the superoperator theory. 

The results of this work can be regarded as providing a somewhat unorthodox view 
of the Dirac and Klein-Gordon equations or, better perhaps, a rather unexpected 
illustration of the superoperator theory. 
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2. The Dirac equation 

The Dirac Hamiltonian for a free electron can be written (Messiah 1966, Bjorken and 
Drell 1964) 

H = mfl+a.p. (1) 

This operator acts on 4-spinors and p, a are 4 x 4 matrices 

1 O a  

p = (  0 -1 O) a = ( .  0) 
where a are the usual Pauli matrices and the 1 in fi  is a 2 x 2 unit matrix. The matrices 
f l ,  a satisfy the anticommutation relations 

pai+@ = 0 a i a j + a j q  = 24 ,  a: = p’ = 1. (3) 
The adjoint operation here is the usual transpose of the complex conjugate so that H 
is self-adjoint. 

For some purposes it is useful to eliminate the odd operators (ie the a terms) from the 
Hamiltonian ( l ) ,  these being the terms which couple the ‘large’ and ‘small’ components 
of the spinors. This can be done by a unitary transformation, the FW transformation, 
which in the present case takes the form (Messiah 1966) 

where E is the operator J(m2+p2).  In the FW representation the Hamiltonian (1) 
becomes 

(5) H ,  = U H U t  = & / ( m 2 + p 2 ) .  

The operators (4) and (5) will appear again below. 
The other aspect of the Dirac Hamiltonian which we wish to mention here is the 

appearance of the rapidly oscillating motion, the zitterbewegung. It is found (Messiah 
1966, Bjorken and Drelll964, Feshbach and Villars 1958) that if a wave packet is formed 
by superposing positive and negative energy solutions of the Dirac equation, its motion 
under the Hamiltonian (1) has two distinct characters. On the average the centre of the 
wave packet follows a smooth classical trajectory but there is also a very fast oscillatory 
motion due to the interference of the positive and negative energy parts. In terms of 
density matrices, which we shall use below, we have the following. We may write, 
schematically, using the eigenkets le) of Hamiltonian (l), an arbitrary density matrix as 

Then the motion of this p will show zitterbewegung if and only if there are nonzero 
matrix elements p(e, e’) having the energies e, e‘ of opposite sign. 

3. Subdynamics and transformation operators 

The application to quantum mechanical systems of the ideas of subdynamics and 
superoperator transformations has been discussed in several papers by Prigogine and 
co-workers (Prigogine et a1 1970a, b, Mandel 1970, Rae and Davidson 1971) so only a 
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brief outline is given here. The starting point is the Von Neumann equation for the time 
evolution of a density matrix 

. i.p 
1- = [H,p] = Lp 

St 

where L is a linear operator acting on density matrices (hence the terminology super- 
operator) which are regarded as elements of some suitable linear space 9, for example 
the space of Hilbert-Schmidt operators. H is usually written as the sum of a 'solvable' 
part H ,  and a perturbation € H I  and there is a corresponding decomposition of L into 
Lo+cL,:  an important role is played by the nullspace projector for L o ,  that is the 
projector P from 9 to the subspace P 9  of density matrices p for which Lop = 0. In 
terms of the resolvent operator for L the solution of (7) is 

with C the Bromwich contour from + c% to - x parallel to the real z axis and above all 
singularities of the integrand. A careful separation of the contour into two parts provides, 
after a rather lengthy calculation, a projection operator Il which commutes with L and 
is such that the exact motion becomes the sum of two independent parts 

p(t) = e-"Lnp(0)+e-"L(l - n)p(O). (8 ) 

The independent evolutions of the parts of p in the I3 projected subspace (coherent part) 
and complementary subspace (incoherent part) constitute the subdynamics and this 
separation depends, among other things, on the projection operator P. It might be 
expected that, since P and Il are both projectors, a more direct relation can be found 
between them and this is indeed the case. I t  has been shown (Rae 1972a, b) that unitary 
superoperators V ,  can be found such that V,  sends H into the nullspace of L o :  more 
precisely 

V,(H, + E H , )  = H ,  + &(E) L,K = 0 (9) 

n = VIPV, (10) 

and Il as obtained above is related to P by 

the same Il resulting from any choice of V ,  satisfying (9). 

given by (4) and defining the superoperator V by 
Now the FW transformation gives rise to a situation of exactly this type, for taking U 

vp = u p u - '  (1 1) 

we see immediately that I/ has the property (9). The FW transformation can therefore be 
used in (10) and (8) to find the independent subdynamics in this case. This is done in 5 5. 

The second aspect of Prigogine's theory which we wish to consider here is the trans- 
formation theory which has been developed for density matrices in the Il subspace. 
(Prigogine et a1 1970a, b). Here the key role is played by a superoperator, generally 
denoted by x, which acts from the subspace P 9  to P 9  and possesses an inverse in this 
subspace. Its definition following the original theory involves a rather lengthy chain 
of equations but is at root an expression in terms of P and L (see the form given in the 
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Appendix). For our purposes it is simpler to use the link that has been made (Rae 
1972a, b, Rae and Davidson 1971) with the Vsuperoperator of (9) 

x = PV+P (12) 
where the V to be used in this expression is a particular case of (9) namely the unique 
superoperator V ,  satisfying (9) and the subsidiary condition 

It is easy to show that the Vdefined by (4) and (1 1) is exactly this unique choice (here the 
role of E is played by l/m) and this will be done in the next section. Thus the FW trans- 
formation will enable us to calculate the superoperator x. From among the transformed 
operators appearing in the theory we single out for examination later the transformed 
Hamiltonian H,, which is obtained from the original Hamiltonian by 

H ,  = x - ~ P H .  (14) 

4. Superoperators associated with FW 

In this section we produce explicit forms for superoperators associated with the 
Hamiltonian (1) and its transformation (4), considering in turn P,  r/; n and 1. 

The Hamiltonian (1) we put in the form 

H 1 
- = Ho+-HH, 
m m 

with 

and E = l/m and write density matrices p in the form 

where a, h, c, d are 2 x 2 blocks. In this notation 

o b  = c = 0. 

Therefore the nullspace projector P is the block diagonal projector 

PP = (; ;). 
For future use we note the formula 

Pp = +p ++ppp. 

The form of V given by (11) and (4) cannot usefully be simplified but following the 
remarks of $ 3  we are obliged to check that V satisfies (13). It is enough to show 
P(8V/dm)VtP = 0 where m is taken as variable andp is fixed. From (4) one has directly 

m 6 
2E2 2E 

U(m+6) = U--6U+-Ut+0(6*)  
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where U ,  E etc are evaluated for mass m unless otherwise indicated. This gives 

Since the P projector eliminates the odd parts it is easy to see from (4) that 

so we obtain the required result 

c:V 
sm 

P-VP = 0. 

The projector II is considered next. From (10) and (16) we have 

(17)  np = Cr+(~UpUt+fPUpC'+B)U = fp+f(C'+pu)p(C'+pu) = 1 - p + -  1 H  - p - ,  H 
2 2 E E  

Since H 2  = E' there follows at once from this: 

n2 = n [rI ,L]  = 0 

so II is indeed a projector which commutes with L. Formula (17) is identical to the 
'observable projection' of Pryce. The latter projection is closely related to time averaging 
(Pryce 1948, Crowther and Ter Haar 1971) which brings us very close to the original 
statistical mechanical motivation for the superoperator theory, so perhaps this 
connection is not surprising. 

Finally, we consider the superoperator x of equation (12) which we have shown above 
to be obtainable from the FW transformation. 

We have 

so 

= +(v+ V+)P .  (19) 

This form shows quite clearly that z - l  exists but there seems to be no simple explicit 
expression available for it. 

5. Applications of the superoperators 

We wish to consider two applications of the preceding section : firstly, a proof that the 
transformed Hamiltonian H ,  of the superoperator theory is identical to the FW 
Hamiltonian and secondly, a demonstration that the two aspects of an electron's motion, 
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the ‘classical’ part and the zitterbewegung, correspond exactly to the independent 
subdynamics in the two subspaces l-I9 and (1 - l-I)9. 

For the first part we have to show x - ~ P H  = H ,  with H ,  given by (5) .  It is simplest to 
show instead that x H ,  = PH.  We have 

x H ,  = PVtP(PE)  = iUt(EP)U+q/?Ut(E/3)UP = 

Although this proves what is required, the use of the superoperator V in this way solves 
the problem rather too simply in the sense that it effectively removes the element of 
surprise that two transformations of the Hamiltonian, H ,  and H,, should be identical 
although arising in totally different ways. It is instructive to perform the calculation 
without using V and relying on the older expressions for X. Unfortunately such a 
calculation requires considerable familiarity with the superoperator theory and is in any 
case rather long so that a detailed account is neither possible nor desirable here. For 
those readers who are acquainted with the superoperator formalism an outline of the 
calculation is presented in an Appendix. 

Turning now to the question of subdynamics we see that as l-I commutes with L the 
time evolution in the subspace is completely determined once we know which 
density matrices lie in l79. Accordingly we re-adopt the notation of (6)  and use (17) to 
get 

Thus l l p  has matrix elements p(e, e‘) if e and e‘ are both positive or both negative in 
sign, and zero otherwise. The space I79 therefore consists of those density matrices 
which do not couple positive and negative energy states and the space ( 1  - l-I)dp consists 
of those which do. It follows from the remarks of $ 2  that the motion in l 7dp  is of a 
smooth classical type while the motion in (1 - n)9 is the zitterbewegung. We illustrate 
this more explicitly by calculating the averages of the velocity operator drldr = a with 
density matrices in each of these two subspaces. 

In the following use is made of the obvious result 

H a + a H  = 2p. 

First we calculate the average with a density matrix p E l-I9 

($) = T r ( i a p ( t ) + 3 a z p ( t ) z  = Tr - a p ( t ) + - p ( r ) - - -  p H 1 H  - a p ( t ) -  
l H  ”) (: E E 2 E  E 

= Tr -a&)+- (: E E  

which is just the average of the ‘classical’ velocity operator p / H .  
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In a similar way if p E (1 - l3)Y we have 

($) = 

This is exactly the oscillatory zitterbewegung term as calculated, for example, in Messiah 
(1966). 

6.  Extensions 

The ideas of the preceding sections can be applied in other circumstances and here we 
mention two other examples. 

In just the same way as occurs above for the free-particle Dirac equation, the FW 
transformation and zitterbewegung for the Klein-Gordon equation can be related to the 
superoperator theory. This is most easily seen if the Klein-Gordon equation 

is rewritten, by taking i?$/dt as an independent variable, in its two component form 
(Feschbach and Villars 1958) 

where IC/ has two components and the matrices 

play a role similar to /3 and a of Dirac theory. In the space of functions I) the scalar 
product is a little different from the usual one so that care has to be taken with the 
notions of adjointness and unitarity. However, one can find a unitary Fwtransformation 

U = -  
2(mE)”’ E - m  E - m  E + m  

with E = J ( m 2  +p2)  which takes the Hamiltonian in (21) to 

H ,  = U H U  = qE. (23) 
Now we can proceed just as before. The results (16), (17), (18) and (19) all hold with q in 
place of /3 and the results of $ 5  follow accordingly. The smooth motion lies in the 
subspace l32, the zitterbewegung in (1 - l7)Y and the transformed Hamiltonian is 

H ,  = x - I P H  = qE (24) 
just as expected. 

The foregoing can also be applied to cases where the Dirac or Klein-Gordon 
particle moves in an electromagnetic field. The main difference is that there is now no 
way, in general, to calculate a closed expression for the FW transformation and, as a 
result, the method employed above using the superoperator V now holds no com- 
putational advantage over the direct method used in the Appendix, this latter mcthod 
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being vastly more cumbersome in the free-particle case. If one considers the electro- 
magnetic field as weak and calculates superoperators order by order, the results go 
through much as before. In particular, the calculation of x - 'PH gives, term by term, 
the usual FW transformed Hamiltonian as calculated, for example, in Bjorken and Drell 
(1964). (For the lowest order terms see the Appendix, equation (A.@.) 
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Appendix. The direct calculation of HD in the Dirac case 

In the superoperator theory (Prigogine et a1 1970a, b, Turner 1971) the transforming 
operator x - l  has been calculated as 

30 

x- l  = p +  1 CPqD'P'C'q)+ 1 C m * s  D(P'C'q)D(r)C(s)+. . . 

c,, = 4/(4+P) 

(A. 1) 
p , q :  1 p,q,r,s 

where 

Cpqrs = - P / ( P  + 4) ( P  + 4 + r + 4 etc ('4.2) 

and the labels p ,  4 etc indicate the order in the perturbation parameter. 
The operators D, C are defined as rather complicated expressions in terms of certain 

other operators I), %', 9 and their derivatives, these being in turn obtainable from L and 
P .  For an account of this see Prigogine et al(1969, 1970a, b) and George (1967): from 
now on we use various properties of these operators without further proof or comment. 
Since the operator I) is nonzero even for the simple Hamiltonian (1) a general resum- 
mation of the series (A.l) is out of the question, but fortunately in calculating x - ' P H  
important simplifications occur. The calculations are still lengthy so only an outline is 
given here. 

First one can show quite simply 

and, more generally 

C""f(P)P = a. Pf(P) C("mf(p)fi = 0 r > l  ('4.4) 

for any scalar function f: Thus the first C on the right of terms in (A.l) behaves in a 
simple enough manner. Next we must consider the action of D, defined as 

By some lengthy calculations one can show that derivatives of 9 acting on a . p  always 
give either zero or terms of the form g(p)p ,  and that derivatives of I) acting on this in turn 
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give either zero or terms of 
at the left of annihilates 
of (A.5) contributes. Thus 

' the same form. But the I) operator which implicitly stands 
all such terms, the net effect being that only the term m = 0 

(A.6) 
. p  = 0 I' > 1 .  

Now one may apply (A.4) and go through the steps again. The expression x - ' P H  
reduces to the form 

z -  ' PH = (1 + C, lC2;r'"%"" + C, , lYc1'%"'5'i""'%(" + . , . )PH. 

Turner (1971) has shown that the coefficients C, 
coefficients (I:*). Therefore 

C, , , etc are exactly the binomial 

in accordance with (5). 
In the case of an electromagnetic field the Dirac Hamiltonian is 

H = r$+a. ( p - t ' A ) + e $ .  iA.7) 

If we split this into H ,  = r r i B  and I.' = a .  ( p  - e A ) +  e$ we obtain the same L,  and P as 
for free particles and find P H  = mp+e+. The lowest order terms, in powers of l l m  and 
the field strength, coming from x -  P H  are 

x - ' P H  = PH+-9")@')m/?+.  . , = mfi+e4+-PL-(l-P)-(l-P)LmP-t 
1 1 1  1 
2 2 Lo Lo 

1 1  
= mp + e 4  + - PL-( 1 - P)a . ( p  - e A  ) 

2 Lo 
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